
Copyright

by

Viraj Joshi

2025

1

The Thesis Committee for Viraj Joshi
certifies that this is the approved version of the following thesis:

Massively Parallelized Multi-Task Reinforcement Learning

SUPERVISING COMMITTEE:

Amy Zhang, Supervisor

Peter Stone

2

Massively Parallelized Multi-Task Reinforcement Learning

by

Viraj Joshi

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Computer Science

The University of Texas at Austin

August 2025

3

Abstract

Massively Parallelized Multi-Task Reinforcement Learning

Viraj Joshi, MSCompSci
The University of Texas at Austin, 2025

SUPERVISOR: Amy Zhang

Multi-task Reinforcement Learning (MTRL) has emerged as a critical train-

ing paradigm for applying reinforcement learning (RL) to a set of complex real-world

robotic tasks, which demands a generalizable and robust policy. However, online

MTRL has largely been limited to training policies using unstable off-policy algo-

rithms in the slow and CPU-intensive low-parallelization regime. As a result, multi-

task approaches for robotics have been dominated by distillation from single-task

experts, behavioral cloning from expert demonstrations, or high-capacity sequence

models trained with offline RL.

This thesis proposes to take advantage of recently popularized massively par-

allelized GPU-accelerated simulators for MTRL, which significantly accelerates data

collection across multiple tasks by simulating heterogeneous scenes in parallel, and,

as a result, offers a path to make MTRL a practical technique for multi-task learn-

ing. Concretely, we introduce a massively parallelized Multi-Task Benchmark (MT-

Bench), a highly extendable, open-sourced benchmark featuring a broad distribution

of 50 manipulation tasks, implemented using the GPU-accelerated simulator Isaac-

Gym. In addition, MTBench includes re-implementations of state-of-the-art MTRL

4

algorithms and architectures, providing a unified framework for evaluating their per-

formance.

We perform extensive experiments to confirm whether the reliance on off-policy

methods in the low-parallelization regime of existing MTRL literature holds in the

massively parallel regime, and then evaluate a suite of MTRL approaches in this new

regime using on-policy methods across our evaluation settings, emphasizing their sig-

nificant speed advantage on MTBench. These experiments reveal key observations on

applying existing MTRL approaches to the massively parallelized regime for robotic

manipulation tasks, facilitating future directions for algorithmic research in MTRL.

Code is available at https://github.com/Viraj-Joshi/MTBench

5

https://github.com/Viraj-Joshi/MTBench

Table of Contents

Chapter 1: Introduction . 7

Chapter 2: Background . 11

2.1 Multi-task reinforcement learning . 11

2.2 GPU Accelerated Simulation . 12

Chapter 3: Benchmark . 13

3.1 Challenges in Multi-Task Reinforcement Learning 13

3.2 Meta-World . 14

3.3 Algorithms . 17

Chapter 4: Results . 18

4.1 Leveraging Massive Parallelism (O1, O2) 18

4.2 Designing off-policy algorithms (O2) 19

4.3 MTRL Approaches (O2, O3) . 21

4.4 Reward Sparsity . 23

4.5 Learning without a Critic (O3) . 24

4.6 Decomposing the Batch (O2 ,O3, O4) 26

4.7 Scaling MTRL (O4) . 27

Chapter 5: Related Work . 33

5.1 Speeding up Deep RL . 33

5.2 GPU-Accelerated Benchmarks . 36

Chapter 6: Future Directions . 37

6.1 Offline to online . 37

6.2 Data collection . 38

6.3 Automated Task Creation . 38

6.4 Pixel-Based Observations . 38

Chapter 7: Conclusion . 40

Appendix A: PQN . 41

Appendix B: MTRL Approaches . 42

B.1 Gradient manipulation methods . 42

B.2 Neural Architectures . 43

Appendix C: Extra Figures . 44

Appendix D: Hyperparamters . 48

Works Cited . 53

Vita . 69

6

Chapter 1: Introduction

Deep reinforcement learning has been successfully applied to a wide range

of decision-making tasks, including games (Mnih et al., 2013, 2015; Silver et al.,

2016), continuous control tasks (Hwangbo et al., 2019; Akkaya et al., 2019; Wurman

et al., 2022). While these applications have achieved remarkable task-specific perfor-

mance, recent research trends in RL have shifted towards developing multi-task agents

(Kalashnikov et al., 2021; Kumar et al., 2022; Fan et al., 2022; Chebotar et al., 2023)

that are adaptable to new tasks (Kirk et al., 2023; Grigsby et al., 2024; Agarwal et al.,

2024; Park et al., 2024) to meet the demand for robust, generalist robots for real-

world deployment. This transition is partially motivated by high-capacity sequence

models (Driess et al., 2023) in the NLP and computer vision fields, demonstrating

strong performance on the vast number of diverse tasks they are pre-trained on and

their ability to be fine-tuned to new tasks given a few demonstrations.

To facilitate the learning of generalist robotic agents, massively parallelized

training (≫ 1000 simulations) has gained popularity with the advancement of GPU-

accelerated simulators (Liang et al., 2018b; Freeman et al., 2021; Makoviychuk et al.,

2021; Mittal et al., 2023; Tao et al., 2024; Authors, 2024; Zakka et al., 2025). These

simulators have significantly mitigated hardware and runtime constraints for learning

single tasks, reducing experiment durations from days to minutes (Liang et al., 2018b;

Allshire et al., 2021; Rudin et al., 2022). However, in the multi-task setting, no out-

of-the-box solution exists to allocate a fixed number of environments per task on a

single GPU, allowing for simultaneous diverse data collection and end-to-end MTRL

training.

Additionally, massively parallelized online batched RL introduces new, non-

trivial algorithmic challenges. For example, on-policy methods like PPO reach a

saturation point beyond which additional parallelization no longer improves perfor-

mance (Singla et al., 2024). Meanwhile, off-policy methods such as SAC (Haarnoja

7

Figure 1.1: MTBench is a benchmark that leverages massive parallelism for MTRL
in two robotics domains, Parkour and Meta-World, and provides MTRL implemen-
tations developed over the years. On the left, we see that IsaacGym’s Tensor API
enables us to assign blocks of environments to a desired task within the domain of
interest, allowing for the setting and getting of the required information for RL train-
ing.

et al., 2018) and Q-Learning become unstable, losing their sample efficiency compared

to on-policy methods as interaction with parallel environments unbalances the replay

ratio (D’Oro et al., 2022; Li et al., 2023; Gallici et al., 2024).

On the other hand, learning general-purpose robotic agents has also motivated

multi-task RL (MTRL), which aims to learn a single policy that maximizes average

performance across multiple tasks. By leveraging task similarities (Pinto and Gupta,

2016), MTRL can enhance sample efficiency and performance over its training task

set, compared to single-task experts. Prior research has primarily focused on ad-

dressing optimization challenges introduced by multiple learning signals, either from

8

a gradient-based perspective (Yu et al., 2020; Liu et al., 2024, 2023a) or through

neural architecture design (Yang et al., 2020; Sodhani et al., 2021; Sun et al., 2022;

Hendawy et al., 2024). In addition, these difficulties compound with extraordinarily

long wall-clock training times due to the experience collection constraint using CPU-

based simulators or require practically inaccessible hardware to alleviate this with

libraries like Ray (Liang et al., 2018a).

For these reasons, multi-task approaches for robotics have been dominated

by distillation from single-task experts (Teh et al., 2017; Reed et al., 2022; Hansen

et al., 2023), behavioral cloning of expert demonstrations via vision and language

backbones (O’Neill et al., 2024; Team et al., 2025), or offline RL (Chen et al., 2021;

Kumar et al., 2022; Chebotar et al., 2023). With massive parallelization, research into

making online MTRL competitive with other multi-task approaches is now feasible.

We no longer need to deal with how to distribute experience collection and learning,

instead utilizing on-policy algorithms, whose batches require data from current ex-

perience and, as a result, take advantage of the parallelization offered by GPU-based

simulators.

To support large-scale MTRL experiments and advance the development of

general-purpose robotic agents, this thesis introduces a massively parallelized Multi-

Task Benchmark for robotics (MTBench). This open-sourced1 benchmark includes

a diverse set of 50 manipulation tasks (Figure 1.1), implemented using the GPU-

accelerated simulator IsaacGym. Each task allows for procedurally generating in-

finitely many variations by modifying factors such as initial states and target goals.

Additionally, MTBench integrates four base RL algorithms with seven state-of-the-

art MTRL algorithms and architectures, providing a unified framework to evaluate

their performance.

Based on our experiments, we highlight the following major observations:

1Code is available at https://github.com/Viraj-Joshi/MTBench

9

https://github.com/Viraj-Joshi/MTBench

(O1) On-Policy > Off-Policy: Choosing between on-policy RL methods or off-

policy methods affects performance more than the MTRL scheme applied in massively

parallel training. Off-policy RL’s asymptotic performance struggles to match on-

policy RL in this regime.

(O2) Prioritize Wall-Clock Time over Sample Efficiency: In the massively

parallel regime, wall-clock efficiency is more critical than sample efficiency, as expe-

rience collection scales easily with more GPUs and iterating over design decisions

quickly is crucial to train a deployable policy.

(O3) Value Learning is the Key Bottleneck in MTRL: Multi-task RL strug-

gles primarily with value estimation rather than policy learning, as gradient conflicts

mostly impact the critic function.

(O4) Online MTRL performance scales with increasing number of tasks

and model capacity. Up to this point, due to hardware and runtime constraints,

it has been unclear how online MTRL scales, a property that has attracted great

interest in single-task online RL and verified for offline multi-task techniques.

10

Chapter 2: Background

2.1 Multi-task reinforcement learning

The RL problem is defined as a finite-horizon, discrete-time Markov Decision

Process (MDP). An MDP is a tuple M = (S,A,P, r, µ, γ), where S ∈ Rn denotes the

continuous state space; A ∈ Rm denotes the continuous action space; P : S × A →

∆(S) denotes the stochastic transition dynamics; r : S × A → R denotes the reward

function; µ : S → ∆(S) denotes the initial state distribution; and γ ∈ [0, 1) is

the discount factor. In this work, we do not consider partially observable MDPs

(POMDPs).

A policy parameterized by θ, πθ(at|st) : S→ ∆(A), is a probability distribution

over actions conditioned on the current state. RL learns a policy πθ such that it maxi-

mizes the expected cumulative discounted return J(θ) = Es∼µ(s0),at∼πθ
[
∑T

t=0 γ
tr(st, at)].

Practically, we fix the number of steps per episode to a horizon length H.

Problem statement Each task τ is sampled the task distribution p(T) is a differ-

ent MDP Mτ = (Sτ ,Aτ ,Pτ , rτ , µτ , γτ). MTRL learns a single policy πθ that max-

imizes the expected cumulative discounted return averaged across all tasks J(θ) =∑
τ∈T Jτ (θ). The only restriction we place upon Mτ is that their union shares a uni-

versal state space S and by appending a task embedding to the state, we give the

policy the ability to distinguish what task each observation belongs to.

A change in any part of a Mτ constitutes what it means to define a new

task. In locomotion, each task from p(T) would be associated with a different goal

to reach in the same control setting, so only rτ would differ across tasks. In tabletop

manipulation like Meta-World, the tasks range from basic skills like pushing and

grasping to more advanced skills combining these basic skills, so the goals (rτ) and

state spaces (Sτ) vary across tasks.

11

2.2 GPU Accelerated Simulation

Traditionally, simulators used for online RL rely on the coordination between

CPU and GPU, where the CPU handles physics simulation and observation/reward

calculations while the GPU handles neural network training and inference, leading to

frequent slow memory transfers between the two many times during the RL training

process. Now, GPU-accelerated simulators provide access to the results of physics

simulation on the GPU, and as a result, we have all relevant data - observations,

actions, and rewards - remaining on the GPU throughout the learning process. This

development is the key to enabling massive parallelization. Consequently, as long as

the GPU simulator can support simulating heterogeneous scenes in parallel, MTRL

training that previously took days or weeks on hundreds of CPU workers (e.g., in

Mujoco) can now finish in just hours or minutes and scales with the number of GPUs

instead.

MTBench utilizes NVIDIA IsaacGym (Makoviychuk et al., 2021) as its GPU-

accelerated robotics simulator. IsaacGym offers a Tensor API that directly exposes

the physics state of the world in Python, so we can directly populate and manage

massively parallelized heterogeneous scenes for all tasks, avoiding the communication

overhead of synchronizing experience collection and neural network training across

distributed systems (Nair et al., 2015; Mnih et al., 2016; Clemente et al., 2017; Espe-

holt et al., 2018; Horgan et al., 2018; Andrychowicz et al., 2020).

12

Chapter 3: Benchmark

MTBench provides a unified framework for simulating a key robotics task:

manipulation, within the IsaacGym simulator. We re-implement all 50 tasks from

Meta-World (Yu et al., 2021), chosen for their simplicity, task diversity, and well-

designed shaping rewards. As Figure 1.1 demonstrates, MTBench supports defining

any custom subset of tasks and their associated number of environments, enabling

researchers to craft different task sets of varying difficulty. The following section

provides a detailed overview of this task domain and its evaluation settings.

3.1 Challenges in Multi-Task Reinforcement Learning

MTRL, despite the simplicity of its extension from single-task RL, is a chal-

lenging problem. Here, we discuss the major challenges in MTRL, which motivate

the design of MTBench.

Task Interference and Conflicting Objectives: The primary challenge in

MTRL is negative transfer or task interference, where learning one task degrades

performance on another. MTBench directly embodies this challenge by combining 50

diverse tabletop manipulation tasks (Meta-World). Within Meta-World itself, tasks

range from simple pushes to complex pick-and-place sequences. The MT10 and MT50

settings specifically evaluate how algorithms cope with varying levels of task diversity

and, as a result, potential interference.

Scalability with Increasing Number of Tasks: MTRL algorithms must scale

effectively in performance and hardware requirements as the number of tasks in-

creases. An algorithm that performs well on a small set of tasks (e.g., 10) can saturate

or degrade when trained on a much larger one (e.g., 50 or more) due to representa-

13

tional capacity limits, optimization difficulties, catastrophic forgetting, or hardware

limitations of making design decisions on small tasks sets. By leveraging massive

parallelization, we make training and evaluation on larger task sets computationally

feasible, encouraging reproducible research into scalable online MTRL solutions for

the first time.

Computational and Runtime Constraints: MTRL research mainly utilizes

sample-efficient off-policy RL methods due to the burdensome hardware requirements

and runtime constraints of simulating tasks in parallel. In contrast, GPU-accelerated

simulation facilitates the study of how RL algorithms behave at their asymptotic per-

formance, enabling research into asymptotically higher performing on-policy methods

and designing new off-policy methods in the massively parallel regime.

Task Groupings: MTBench allows for the easy configuration of what tasks and

the number of parallel environments per task, enabling research into how task group-

ings affect learning efficiency and knowledge transfer.

Generalization Within and Across Tasks: A multi-task policy should gener-

alize to variations within a task (e.g., different goal positions) and exhibit sample-

efficient transfer to related, unseen tasks. Meta-World explicitly includes parametric

goal variation within each task definition (e.g., varying initial object and target po-

sitions) to assess within-task generalization and provides a large enough task set to

test if policies can transfer to unseen tasks.

3.2 Meta-World

Task Descriptions: Meta-World consists of 50 tabletop manipulation tasks that

require a simulated one-armed robot (Franka Robotics, 2017) to interact with one or

two objects in various ways, such as pushing, picking, and placing. Within each task,

14

Figure 3.1: Illustrations of non-parametric tasks variation, parametric tasks variation
of Faucet Open, and the observation and action space of the RL agents in the Meta-
World benchmark.

Meta-World also provides parametric goal variation over the initial object position

and target position. Each task has a pre-defined success criterion (Appendix 3.2).

Our reimplementation of Meta-World makes necessary changes by updating Sawyer

to Franka Emika Panda and tuning the reward function of each task to ensure that

the tasks are individually solvable.

Observation and Action Spaces: Despite sharing a common state space dimen-

sionality, the semantic meaning of certain dimensions varies across tasks. The state

representation comprises the end-effector’s 3D position in R3, the normalized gripper

effort in R1, the object 3D positions from two objects in R6, and the quaternion rep-

resentation of the two objects’ orientation in R8. For tasks involving a single object,

the state dimensions corresponding to a second object are set to zero. To account for

temporal dependencies, the observation space concatenates the state representations

from two consecutive time steps and appends the 3D position of the target goal. This

results in a final observation vector of 39 dimensions. The action space is also con-

sistent across the tasks, comprising of the displacement of the end-effector in R3 and

the normalized gripper effort in R1. An overview of the observation and action can

be seen in Figure 3.1.

15

Evaluation Settings: Following Yu et al. (2021), we explicitly provide two evalua-

tion settings: multi-task 10 (MT10) and multi-task 50 (MT50), where MT10 consists

of 10 selected tasks and MT50 consists of all 50 tasks. During evaluation, we measure

the success rates (SR) and the cumulative reward (R). When each environment has

its parametric parameters randomly varied every reset, the evaluation is referred to

as MT10-rand and MT50-rand.

Reward Design: Our tasks utilize dense rewards, which provide continuous feed-

back to guide specific interactions between the robotic arm and objects. However,

while the tasks themselves in Meta-World are defined independently of their reward

functions, training performance is significantly influenced by reward design. We did

our best to tune each reward function, starting from the original Meta-World task

implementations, to account for the simulator differences and ensure each task is

learnable in the single-task setting, but some tasks still achieve a 0% success rate (see

C.5).

Evaluation Metrics: We report two evaluation metrics, the overall success rate

(SR) averaged across tasks and the cumulative reward (R) achieved by the multi-task

policy. Following the original Meta-World, success is a boolean indicating whether

the robot brings the object within an ϵ distance of the goal position at any point

during the episode, which is less restrictive than works qualifying a success only if it

occurs at the end of an episode. Mathematically, success occurs if ∥o − g∥2 < ϵ is

satisfied at least once, where o is the object position and g is the goal position.

Rather than defining the success rate as the maximum success rate over some

evaluation rollouts as some previous work did, the success rate is defined as the

proportion of success in the large number of environments that terminate every step.

The reported success rate is this success rate averaged over the last 5 epochs of

training. Due to massive parallelization, there is no need to separately roll out the

learned policy in a separate process.

16

3.3 Algorithms

We re-implement a suite of algorithms and MTRL approaches using a pop-

ular learning library RLGames (Makoviichuk and Makoviychuk, 2021), providing a

unified benchmark for end-to-end vectorized MTRL training across many seeds and

hyperparameters on a single GPU. Our benchmark is highly extensible towards new

RL algorithms as well as approaches within the two axes of MTRL research, gradient

manipulation, and neural architectures. There is a brief overview in Appendix B.

Base MTRL Algorithms We implement four RL algorithms: MT-PPO, a multi-

task version of Proximal Policy Optimization (Schulman et al., 2017); MT-GRPO

(Shao et al., 2024), a variant of PPO introduced for language modeling but adapted

here for control; MT-SAC, a multi-task version of Soft Actor-Critic (Haarnoja et al.,

2018); and MT-PQN, a novel multi-task extension to Parallel Q-learning (Gallici

et al., 2024) to handle continuous control problems. All algorithms are multi-task

versions of their single-task counterparts, simply by augmenting the observation space

with one-hot task embeddings or learnable task embeddings.

MTRL Schemes We implement two categories of MTRL schemes that can be eas-

ily combined with any of our base algorithms. The first category consists of gradient

manipulation methods: PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2024), and

FAMO (Liu et al., 2023a). The second category consists of multi-task architectures:

Soft-Modularization (Yang et al., 2020), CARE (Sodhani et al., 2021), PaCo (Sun

et al., 2022), and MOORE (Hendawy et al., 2024). The prefix ”MH” (multi-head) is

prepended to name of the MTRL approach to denote one output head per task, and

otherwise ”SH” (single-head) to denote all tasks sharing one head.

17

Chapter 4: Results

In this section, we inform future research directions for MTRL researchers

through four key observations.

4.1 Leveraging Massive Parallelism (O1, O2)

To illustrate how on-policy MTRL algorithms leverage massive parallelism,

we first evaluate two on-policy algorithms, MT-PPO and MT-GRPO, alongside a

traditional off-policy algorithm, MT-SAC, in Meta-World. Figure 4.1 presents the

learning curves with respect to both wall-clock time and the number of environment

interactions. Since this observation is concerned with answering what the best base

MTRL algorithm is, we tune all aspects of each method to achieve its highest success

rate, including using different network architectures. The full hyperparameter and

model details are in Appendix D.

On-policy algorithms outperform traditional off-policy algorithms. Using

MT-SAC as a representative of traditional off-policy algorithms used for MTRL,

Figure 4.1 shows there is a substantial performance gap in success rate between MT-

PPO and MT-SAC in both evaluation settings and, more relevant to researchers, a

substantial wall-clock time difference as well (roughly 22 minutes and 12 hours after

200M frames of collected experience in MT10-rand). While MT-SAC can match MT-

PPO’s runtime by simply matching the gradient steps per epoch that MT-PPO takes,

this results in a near-zero success rate. Furthermore, as the number of tasks increases

to the MT50-rand setting, these gaps increase.

This indicates traditional off-policy methods in the end-to-end single GPU

setting cannot effectively leverage increased environment interaction from massively

parallelized simulators, where, in the absence of clever modifications, their stability,

18

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.0

0.2

0.4

0.6

0.8
Su

cc
es

s R
at

e

M
T1

0

MT-GRPO
MT-PPO
MT-PQN
MT-SAC

0 50M 100M 200M 1B 2B 4B 6B
0.0

0.2

0.4

0.6

0.8

MT-GRPO
MT-PPO
MT-PQN
MT-SAC

0 5 10 15 20 25 30
Wall Clock Time (hours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

M
T5

0

MT-GRPO
MT-PPO
MT-SAC

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 MT-GRPO
MT-PPO
MT-SAC

Figure 4.1: Vanilla MTRL performance in Meta-World. We report the point-
wise 95% percentile bootstrap CIs of the average success rates using 10 seeds for each
RL algorithm in the MT10-rand and MT50-rand evaluation settings. On-policy meth-
ods (MT-PPO, MT-GRPO) continue to improve with more experience, achieving a
substantially higher success rate than the traditional off-policy method, MT-SAC, in
substantially less time.

performance, and runtime greatly rely on the ratio of gradient updates to environment

steps, i.e, update-to-data (UTD) ratio (D’Oro et al., 2022) being greater than or equal

to 1.

4.2 Designing off-policy algorithms (O2)

While massive parallelization has made experience collection cheap, the promised

sample efficiency of off-policy methods over on-policy methods is extremely desirable,

as that would enable even faster iteration in training deployable policies. Research

into effectively leveraging massive parallelism in off-policy methods is gaining popu-

larity, but is either not yet adapted for the continuous control setting (Gallici et al.,

19

0 30min 1hr 2hr 3hr 4hr
0.0

0.2

0.4

0.6

0.8

M
T1

0

Su
cc

es
s R

at
e

0M 50M 100M 200M 300M 400M 500M

Fast TD3 + SimbaV2 (16M)
Vanilla PPO (16M)
Vanilla PPO+TE (16M)

0 1 2 3 4 5 6 7 8
Wall Clock Time (hours)

0.0

0.2

0.4

0.6

0.8

M
T5

0

Su
cc

es
s R

at
e

0M 200M 400M 600M 800M 1000M
Frames

Figure 4.2: We compare the 95% bootstrapped confidence intervals of the average
success rate using vanilla MT-PPO and MT-FastTD3-SimbaV2 for the MT10-rand
and MT50-rand evaluation settings of Meta-World. Vanilla MT-PPO uses 500M
frames per run over 3 seeds and MT-FastTD3-SimbaV2 uses 50/500M frames over 10
seeds. Exact numbers are in Table C.1

2024) or requires distributed asynchronous processes spread across GPUs (Li et al.,

2023).

PQN In Figure 4.1, we adapted PQN (Gallici et al., 2024) to the multi-task contin-

uous control setting. The details of our implementation are in Appendix A. Surpris-

ingly, applying these simple changes to an originally discrete action algorithm and

left to run long enough, MT-PQN can roughly match the performance of MT-PPO in

MT10. Considering PQN’s performance and stability, similar simulation throughput

20

to PPO, and lack of a replay buffer suggest that smartly adapting PQN to continuous

control could be a promising research direction compared to actor-critic algorithms.

Fast-TD3 Recently, Fast-TD3 (Seo et al., 2025) has shown that TD3, alongside

several other changes, outperforms PPO in its ability to leverage massive parallelism

for single-task training, achieving higher asymptotic performance and faster wall-

clock training times across several humanoid and quadruped tasks (Sferrazza et al.,

2024; Mittal et al., 2023; Zakka et al., 2025). Simultaneously, BRC (Nauman et al.,

2025) has shown that applying 3 existing tricks - ’Bigger, Regularized, Categorical’

- to value-based multi-task learning in the low parallelization regime can stabilize

MTRL’s optimization challenges and result in state-of-the-art performance.

We follow these changes made in BRC and apply them in MTBench to create

MT-FastTD3 (Figure 4.2). While PQN also uses regularization and residual con-

nections, BRC’s use of a distributional critic and reward normalization is the key

difference that overcomes the difficulty of value estimation in an extremely low UTD

setting. MT-FastTD3 has a final performance advantage, sample efficiency, and wall-

clock training time advantage over MT-PPO using an MLP of equal parameter count

in both evaluation settings, with final performance quite close to that of MT-PPO

using the best MTRL architectures or gradient manipulation methods included in

MTBench (Figure 4.3).

4.3 MTRL Approaches (O2, O3)

Figure 4.3 reports the 95% bootstrap confidence intervals of the mean success

rate following Agarwal et al. (2021) of all MTRL approaches using MT-PPO. All of

the gradient manipulation methods use the same three-layer MLP neural networks.

Multi-task architectures show greater performance gains with larger task

sets. As shown in Figure 4.5, the benefits of multi-task architectures become more

21

80 84 88 92
MT10

MH-MOORE
SH-MOORE

SH-PaCo
MH-CARE
SH-CARE

Soft-Modularization
FAMO

CAGrad
PCGrad

MH-Vanilla
SH-Vanilla

56 64 72 80
MT50

Figure 4.3: We compare the 95% bootstrapped confidence intervals of the average
success rate of all MTRL approaches using MT-PPO for the MT10-rand and MT50-
rand evaluation settings of Meta-World. Each approach uses 1B frames per run over
10 seeds. Exact numbers are in Table C.2.

pronounced as the number of tasks increases. In MT10-rand, vanilla PPO asymp-

totically outperforms advanced multi-task architectures. However, in MT50-rand,

the best-performing multi-task architecture, MH-MOORE, surpasses the vanilla ap-

proach by roughly 16% in success rate. This improvement is likely due to enhanced

knowledge sharing that only manifests in training diverse enough tasks, such as MT50.

Resolving gradient conflict consistently improves the performance. Gra-

dient manipulation can outperform or match vanilla MT-PPO across all evaluation

settings (middle section of Figure 4.3). This suggests that gradient conflicts are still

a common optimization challenge in multi-task RL problems. Among these methods,

FAMO shows superior scalability with respect to an increasing number of tasks in its

success rate as well as wall-clock training time, likely due to its simple strategy of

adaptive task weighting, which eliminates the need for backpropagating through each

task’s loss.

22

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Av

g.
 C

os
in

e
Si

m
ila

rit
y

Actor Gradient
Critic Gradient

Figure 4.4: The average gradient cosine
similarity across all task pairs in MT10-
rand for both actor and critic networks.
The shadow areas represent the ranges be-
tween minimum and maximum cosine sim-
ilarities.

Multihead

PaCO

MH-MOORE

MH-CARE

Soft-Modularization

5 0 5 10 15

MT10
MT50

Figure 4.5: Success rate (SR) differ-
ences of five neural network architec-
tures relative to the Vanilla baseline in
MT10 and MT50.

Value learning is the key bottleneck in MTRL. Prior research in MTRL has

shown that addressing gradient conflicts improves performance in off-policy actor-

critic RL algorithms like SAC. Our benchmarking results extend this observation

to on-policy actor-critic algorithms, demonstrating that gradient conflicts also arise

when learning the critic network in PPO. However, we do not observe similar conflicts

in policy optimization. Hence, our gradient manipulation algorithms are only applied

to the critic gradients. This observation aligns with prior work using an actor-critic

algorithm for large-scale multi-task learning (Hessel et al., 2019). Figure 4.4 shows

the average cosine similarity across all task gradient pairs for both actor and critic

networks, where critic gradients manifest lower minimum similarities.

4.4 Reward Sparsity

In Meta-World, tasks utilize dense rewards, which provide continuous feed-

back to guide specific interactions between the robotic arm and objects. In contrast,

another popular robotic domain, locomotion, often employs a sparse reward scheme,

where the agent is rewarded solely for maintaining forward velocity toward waypoints,

without receiving additional signals for intermediate behaviors (Liang et al., 2024).

23

MT10 MT500.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

0.91

0.74

0.88

0.63

MT-GRPO
MT-PPO

Figure 4.6: Eliminating the difficulty of critic estimation consistently im-
proves performance over most MTRL approaches using MT-PPO when
comparing the 95% bootstrapped CI of average success rates in Meta-World. Each
approach uses 1B frames per run over 10 seeds.

Dense rewards increase the complexity of multi-task critic learning. In

multi-task RL, dense reward functions introduce challenges for critic learning, as

different tasks exhibit varying reward distributions and gradient magnitudes. We can

see in Figure 4.3 that addressing these conflicts in dense-reward multi-task settings

such as Meta-World can improve performance. However, the performance gains are

relatively marginal in a sparse-reward multi-task setting (Joshi et al., 2025).

4.5 Learning without a Critic (O3)

To further investigate the impact of gradient conflict from the critic in MTRL,

we can eliminate the critic by increasing the horizon length in MT-PPO to be equal

to the length of the episode. In fact, this is equivalent to implementing MT-GRPO

(Shao et al., 2024) without the KL-divergence term because for each task T (instead

of each prompt), we already roll out a group of responses {o1 . . . oG} and compute the

episodic returns R(T,oi). All that is left is to set the advantage Âi,j of all actions j

in response i to the normalized episodic return with respect to its group as GRPO

24

does:

Âi,j =
R(T,oi)−mean({R(T,o1), . . . , R(T,oG)})

std({R(T,o1), . . . , R(T,oG)})
(4.1)

In our implementation, we slightly modify the advantage Âi,j to be the group-normalized

estimate of the dense reward-to-go from each action j, i.e the same as advantage nor-

malization in PPO but on each per-task batch of size (G × horizon length). There

was a small performance uplift in using this variation, most likely due to variance

reduction. Unlike PPO, we found there was no practical performance difference in

normalizing the advantage across the entire batch first.

We also find that the prescriptions of Dr. GRPO (Liu et al., 2025) to address

1) the response-level length bias and 2) question (task)-level bias were not necessary.

Since our robot always rolls out to a fixed episode length, there is no response-level

length bias to correct. However, resolving task-level bias by removing the division

by the standard deviation of returns (even after batch normalization) led to poor

performance.

MTRL can benefit from eliminating gradient conflict in the critic. In the

dense reward setting, Figure 4.6 indicates that MT-GRPO is a simple baseline that

nearly outperforms every MTRL approach (except MH-MOORE and FAMO in MT-

50) using the same hyperparameters as MT-PPO and no baked-in MTRL design. Of

course, this is only possible when the entire batch can fit into the GPU, a setting not

possible with massively parallelized pixel-based observations.

Massive Parallelism is well-suited for reducing bias from an imperfect

critic. By directly using Monte Carlo returns instead of bootstrapping, we effec-

tively eliminate the bias introduced by imperfect critic estimation. This approach

represents a clear bias-variance tradeoff: while removing the critic increases the vari-

ance of our gradient estimates, this increased variance can be effectively mitigated

25

2 3 5 7 10 15
Training time (hours)

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

Su
cc

es
s R

at
e

Environments
1024
2048
4096
8192
16384
32768

Figure 4.7: Average Success Rate when using an equal number of gradient
updates across different batch sizes in Meta-World’s MT50. The same color
represents the same batch size, with the lightest color representing a batch size of
2097152 and the darkest 32768. Linked shapes indicate the same batch size. The
upper left is the best region because we are concerned with wall-clock time in this
regime, not sample efficiency. See Table C.3 for exact numbers

through large batches (of size episode length times the number of parallel environ-

ments) made possible by massive parallelization (Sutton et al., 1999).

4.6 Decomposing the Batch (O2 ,O3, O4)

One key lever to final performance is the number of parallel environments.

Another is the rollout horizon before a PPO update is performed. Thus, each epoch’s

batch size for on-policy methods is solely determined by the Nenvs×Nrollout. Similar to

Mayor et al. (2025)’s investigation, we also observed that increasing batch size through

either component yields increasing performance, but only up to a point. However,

in the multi-task setting, both levers are particularly valuable for slightly different

26

reasons. Increasing the number of environments increases state coverage (thus better

exploration), and increasing the rollout length closer to the episode length eases the

difficulty of value estimation.

Interestingly, SAPG (Singla et al., 2024) attributes batch size saturation in the

massively parallel regime to sampling actions from a Gaussian policy, which results

in most actions being near the mean, causing most environments to execute similar

trajectories. To enforce exploration, SAPG splits the available environments into

distinct leader π1 and follower π2, . . . , πM policies rather than training a single policy

across all environments. Alternatively, one could train an expressive, multi-modal

policy (McAllister et al., 2025). Both could be avenues to break this barrier.

For researchers, batch size also creates an important tradeoff with wall-clock

training time. For a constant batch size, increasing the number of environments

implies the rollout horizon must decrease, which increases the frequency of gradient

updates. Following Rudin et al. (2022), we see that the largest batch size tested of

size 32768 × 64 is approaching the performance of MT-GRPO in Figure 4.6 with a

much bigger batch size of 24576 × 150. We find that given equal parameter count,

MT-GRPO is an upper bound on vanilla MT-PPO’s final performance by examining

Figure 4.6 and all experiments in Section 4.7.

4.7 Scaling MTRL (O4)

The reduced wall-clock training time using MTBench enables researchers to

scale their experiments, allowing them to understand the behavior of online MTRL

relative to alternative techniques that can train massively multi-task agents. Such a

platform could create a recipe that establishes an MTRL ”scaling law” analogous to

those in NLP and CV, defined by three key properties:

1. As the number of training tasks (data) and model capacity (compute) increase,

performance scales on the shared task set.

27

0.1 1 4 16 64 256
Total parameter count (M)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

MT10 rand

Vanilla
Vanilla (TE)
Simba V2
SimbaV2 (TE)

0.1 1 4 16 64 256
Total parameter count (M)

0.0

0.2

0.4

0.6

0.8
MT50 rand

Figure 4.8: MTRL enables parameter scaling when examining the 95% boot-
strapped CI of the final success rate in Meta-World’s evaluation settings. We can
scale the critic parameters to 256M parameters, far beyond single-task RL, in MT50-
rand. The MLP-based variants use 1B frames over 3 seeds, and the SimbaV2 variants
use 500M frames over 3 seeds. See Table C.4 for exact numbers.

2. Given a fixed compute budget, a multi-task learner achieves higher aggregate

performance than dividing that same budget among single-task learners.

3. The number of frames to at least match the performance of a single-task expert

on an additional task decreases as the number of pre-training tasks used in the

online phase increases, i.e., pre-training enables sample-efficient transfer.

MTRL enables parameter scaling. We first address whether satisfying 1) is

possible by scaling model capacity. In single-task RL, vanilla MLPs fail to scale

due to a loss of plasticity and increased neuron dormancy (Obando-Ceron et al.,

2024), as larger networks tend to overfit early in training to a non-stationary data

distribution. In contrast, we find that scaling the critic’s capacity is possible in

the multi-task regime, and that task diversity exerts sufficient pressure on a large

network to maintain plasticity, exactly as McLean et al. (2025) found, in Figure 4.8.

Scaling the actor’s capacity is detrimental, and best to leave it fixed as Nauman et al.

28

0M 200M 400M 600M 800M 1000M
Frames

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

MT10 rand

MLP (1M)
SimbaV2 (1M)
SimbaV2 (4M)
SimbaV2 (16M)
SimbaV2 (64M)
SimbaV2 (256M)

0M 200M 400M 600M 800M 1000M
Frames

0.0

0.2

0.4

0.6

0.8
MT50 rand

Figure 4.9: Using the MLP that scaled the best struggles in comparison
to more advanced architectures with equivalent parameter count like Sim-
baV2 that are meant to stabilize learning and has minimal overhead, unlike
neural architectures introduced over the years in Section 4.3 when exam-
ining the 95% bootstrapped CI of the final success rate of Meta-World’s evaluation
settings. We chose the 1M parameter count MLP for comparison it does the best
among MLP capacities. The MLP uses 1B frames over 3 seeds, and the SimbaV2
variants use 500M frames over 3 seeds.

(2024) noted in the single-task case. Surprisingly, many specialized architectures that

promised to leverage task similarities with advanced architectures in Section 4.3 are

subsumed in final performance by MLPs of an equivalent parameter count, again as

McLean et al. (2025) also found.

MLPs are not the optimal way to scale parameters for MTRL. Architec-

tures originally designed to stabilize value-based learning when scaling models for

single-task RL (Nauman et al., 2024; Lee et al., 2025) offer sample-efficiency and

performance benefits over vanilla MLPs in the face of optimization challenges intro-

duced in the multi-task setting (Figure 4.9). This suggests that architectural design

for stabilizing norms remains valuable in the on-policy setting.

Furthermore, we ablated this scaling with learnable task embeddings (denoted

TE), observing a small performance degradation, despite the conventional wisdom

that this provides networks an explicit mechanism to learn task-specific structure

29

0 100M 250M 500M 1B 3B 5B

Frames

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Su
cc

es
s R

at
e

Sample Efficiency

0 1K 5K 10K 20K 50K 100K 200K 400K 800K

Gradient Updates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Gradient Efficiency
Multi-Task MLP (1M)
Multi-Task SimbaV2 (1M)
Single-Task Average (1M)

Figure 4.10: Multi-task learners are superior to single-task specialists in
sample (left) and compute(right) efficiency when examining the 95% boot-
strapped CI of the average success rate in Meta-World’s evaluation settings. The
MLP approach uses 1B frames over 3 seeds, the SimbaV2 variant uses 500M frames
over 3 seeds, and the single-task RL runs use 100M frames over 3 seeds. All ap-
proaches use a critic parameter count of size 1M.

(Nauman et al., 2025). We attempted to scale BRO similarly (Nauman et al., 2024),

but found that Simba (Lee et al., 2025) scaled noticeably better. On-policy methods

do not suffer from the challenges of estimating a non-stationary target for critic

learning, so in this setting, BRO’s use of layer norm may overly regularize the network.

Training critics with cross-entropy could lead to superior parameter scal-

ing. Naturally, Figure 4.8 shows that parameter scaling eventually leads to a perfor-

mance plateau given a fixed number of tasks. This curve could be shifted upward with

more tasks or a better training objective. In fact, Nauman et al. (2025) applied a cat-

egorical distributional critic with SAC to improve final performance. Cross-entropy

is scale-invariant, which is particularly salient for multi-task RL, where reward scales

differ among tasks throughout training. Combining a distributional critic in the multi-

task on-policy setting is an interesting future line of work (Voelcker et al., 2025). Such

a combination can further leverage model capacity to enhance final performance, as

it produces more expressive representations using the cross-entropy objective (Fare-

30

107 108 109 1010 1011

Training Compute (Gflops)

35

40

45

50

55

60

65

Av
er

ag
e

Fa
ilu

re
 R

at
e

(%
)

Model Size / Num. Envs

XS/4096
S/4096
M/4096
L/4096
XS/8192

S/8192
M/8192
L/8192
XS/16384

S/16384
M/16384
L/16384
XS/24576

S/24576
M/24576
L/24576
XL/24576

XS/32768
S/32768
M/32768
L/32768

Figure 4.11: Online on-policy MTRL does not follow the conventional wis-
dom of offline, large-scale robot learning (at least with 50 tasks) that large
multi-task learners are more computationally efficient when examining the
mean failure rate in Meta-World’s MT50 evaluation setting. The model sizes corre-
spond to the critic capacities in Figure 4.8 and the rollout horizon remains unchanged.
Each variant uses 500M frames over 3 seeds.

brother et al., 2024).

Multi-Task learners are sample and compute efficient. We verify whether the

premise of multi-task learning holds, that a multi-task learner is at least as performant

as the average of single-task specialists and benefits from positive transfer. Figure 4.10

presents this assertion in terms of both sample efficiency and gradient efficiency. Each

task of MT50 is run for 100M frames to ensure convergence of all tasks (although some

tasks converge in as little as 10M frames), where how far the average of all specialists’

curves is shifted right (more inefficient) relative to a multi-task learner increases with

the number of tasks. In other words, at a relatively low number of tasks (50), the

31

average of specialists is a simple solution that may have a higher success rate than a

multi-task learner, but becomes more computationally wasteful as MTRL begins to

scale in the number of tasks.

Furthermore, Figure 4.10 also shows that while multi-task MLPs are not as

performant as the average final performance of single-task learners, they still offer

significant efficiency gains. SimbaV2 increases this gap to a 10x sample efficiency and

gradient efficiency advantage when compared at the final performance of the average

of single-task learners.

Larger Multi-Task Learners are not necessarily more compute-efficient.

In imitation learning or supervised learning, we’ve seen that small models become

compute-inefficient, given a fixed dataset, by training for longer to try to match the

performance of larger models (Peebles and Xie, 2023). We can similarly characterize

the computational efficiency of an online multi-task learner. In this setting, we again

have two levers to pull: parameter count and the number of environments. In Figure

4.11, we plot error rate (1-success rate) as a function of total training compute over

combinations of batch sizes (number of environments) and MLP model capacities.

Although the plot suggests that continuing to scale compute would lower the failure

rate, these runs have converged and are simply an artifact of using large scale on

the x-axis. More importantly, we find that larger models with large batch sizes are

more computationally inefficient to reach similar levels of performance as smaller

models with smaller batch sizes. Runs with large batch sizes simply have reduced

wall-clock time due to fewer gradient updates. As this setting develops better archi-

tectures, algorithms, and adds more tasks, this plot may prove useful as it has for

other domains.

32

Chapter 5: Related Work

5.1 Speeding up Deep RL

As deep RL gained prominence with superhuman performance at Atari games

(Mnih et al., 2013, 2015) using deep Q networks (DQN), it became clear that its

success would now rely on scaling the size of experiments by simulating a significant

amount of experience, requiring ever longer training time and more intensive compute

requirements. This inspired research on how to parallelize or distribute deep RL to

speed up training/iterate faster, and scale to larger/harder problems. In some sense,

end-to-end deep RL on GPUs is the culmination of these efforts.

Gorila (Nair et al., 2015) was the first work to propose distributing deep RL

by scaling DQN for Atari. This required three components that mirror distributed

approach for supervisd learning, DistBelief (Dean et al., 2012): 1) rollout workers

(actors) that gather experience across CPU processes, 2) learners that compute gra-

dients of each actor’s replica model parameters on randomly sampled batches from a

per-actor or global experience replay buffer, and 3) sharded parameter servers that

asynchronously apply the gradients sent from the learners to the model and periodi-

cally communicate the updated copy of model parameters back to the actor-learners.

However, Gorila required quite a bit of hardware - a compute cluster of one hundred

actors, one hundred learners, and 31 parameter servers.

A3C (Mnih et al., 2016) greatly simplified this approach by distributing actor-

learners over threads on 1 multi-core CPU, where each actor-learner thread inter-

acts with its environment instance using its own policy/value networks for a fixed

number of timesteps, computes an on-policy gradient locally from its rollout, and

asynchronously updates the global parameter set without any locking. As a result,

there is no network communication overhead involved with parameter servers or using

a global experience replay. A3C’s simplicity resulted in shorter training times and

33

better performance in Atari than Gorila, foreshadowing that it is possible to achieve

state-of-the-art RL performance without scaling to practically out-of-reach hardware.

Critically, A3C was a general method that demonstrated distributed deep RL beyond

Q-learning to n-step Q learning and on-policy advantage actor-critic.

Unlike Gorila, when scaling to hundreds of actors, A3C’s asynchronous pa-

rameter updates cause policy lag, meaning a thread’s policy gradients can become

stale or off-policy as the updates from other threads could have significantly changed

the global parameter set by the time a thread manages to have its gradient applied.

This not only leads to poor performance but fundamentally limits its application to

multi-task learning, where each actor is a task.

In contrast, batched A2C (Clemente et al., 2017) synchronously applies a batch

of actions sampled from a single master policy to all environment instances (managed

by worker processes) for a fixed number of timesteps, subsequently computing and

updating the policy using the gradient over this batch of experience using 1 learner on

a GPU, exactly like MTBench. Synchronous distributed RL can effectively leverage a

GPU with batched updates to reduce training time. As a result, this framework scales

to hundreds of actors (like Gorila) by avoiding asynchronous updates and remains on

one machine (like A3C).

A2C worked well for Atari, but in more complicated domains, e.g, GPU-

accelerated 3D simulators, where we can only simulate one environment instance

per GPU, stepping among environment instances will lead to waiting for the slowest

environment to complete at each timestep, hindering throughput when variance in

step times is high. DD-PPO resolves this drawback of A2C for resource-intensive

actors with impressive results (Wijmans et al., 2019; Chen et al., 2022a), scaling to

hundreds of GPUs in PointGoal navigation by preempting the straggling actors once

a threshold of total actors has finished. With multiple GPUs, DD-PPO can be viewed

as an extension of A2C. After each GPU computes its policy gradient from the ex-

perience collected by its actor, DD-PPO synchronously combines all gradients using

34

AllReduce, and applies this averaged gradient before starting the next rollout.

Other distributed systems like IMPALA (Espeholt et al., 2018) leveraged this

decoupling between handling policy inference/training on the GPU and collecting

experience on CPU cores, resulting in 30 times the throughput as A3C and, as a result,

enabling multi-task learning reminiscent of MTBench by simply allocating actors to

tasks. IMPALA has each distributed actor generate n-step trajectories (instead of

gradients like A3C) and asynchronously feeds them into a shared queue, from which

a central, GPU-based learner continuously draws mini-batches, computes gradients,

and optimizes the actor-critic over mini-batches of received trajectories. While the

high throughput stems directly from the actors and the learner operating concurrently

without waiting for each other, such a procedure causes the same policy lag problem

encountered by A3C. IMPALA addresses this with an importance sampling correction

called V-trace.

Problematically, work in distributed RL outside Atari in more realistic and

challenging domains (Wijmans et al., 2019; Andrychowicz et al., 2020; OpenAI et al.,

2019), requires scaling to potentially thousands of CPU cores and hundreds of GPUs

to achieve state-of-the-art performance, presenting a serious challenge for academic

researchers to obtain the necessary hardware for research.

The ingredients to practical multi-task RL were present in distributed RL, but

it was not until a wave of recent GPU-accelerated simulators (Liang et al., 2018b;

Freeman et al., 2021; Makoviychuk et al., 2021; Mittal et al., 2023; Tao et al., 2024;

Authors, 2024; Zakka et al., 2025) that the experience collection constraint was alle-

viated for single-task RL by being able to simulate orders of magnitude faster than a

CPU-based simulator. This obviated the need for demanding hardware requirements

and the overhead in communication costs of sending gradients and parameters across

machines/CPUs using distributed RL methods. As a result, we’ve seen striking suc-

cess in rapidly learning single-task RL policies beyond games to real-world, complex,

robotic control tasks (Allshire et al., 2021; Rudin et al., 2022; Seo et al., 2025) with

35

the modest, minimum hardware requirement of 1 GPU.

5.2 GPU-Accelerated Benchmarks

Several RL benchmarks have arisen as a result of GPU-accelerated simulation,

mainly in JAX-based game environments (Cobbe et al., 2020; Lange, 2022; Morad

et al., 2023; Bonnet et al., 2023; Koyamada et al., 2023; Rutherford et al., 2024;

Matthews et al., 2024). In contrast, a relatively small number of rigid-body robotic

tasks are bundled with GPU-accelerated simulators or soft-body robotic tasks with

other simulation platforms (Chen et al., 2022b; Xing et al., 2024). To truly represent

the multi-task challenge, MTBench precludes adapting popular, small task sets, e.g,

robot tasks from DMControl (Tassa et al., 2018) or robosuite (Zhu et al., 2020), or

combining them since their tasks significantly overlap, resulting in low diversity. For

manipulation, Meta-World resolves both of these concerns and maintains continuity

of MTRL research over other large task set alternatives like RLBench (James et al.,

2020) or LIBERO (Liu et al., 2023b).

36

Chapter 6: Future Directions

While MTBench opens up new advances in online MTRL by enabling algo-

rithm designers to quickly iterate on their ideas, MTBench is also applicable to any

area of sequential decision making that would benefit from increased simulation speed.

6.1 Offline to online

Most notably, our work fits neatly into the dominant ”pre-train, then fine-

tune” paradigm, where pretraining a high-capacity model on a large, diverse dataset

and then fine-tuning on a small amount of domain-specific data to specialize on

downstream tasks has led to the success of foundation models in NLP and vision that

outperform specialist systems. We have seen this analogously play out in decision-

making in many forms. For example, some works use egocentric human videos to

pretrain visual representations using self-supervised objectives that can be leveraged

for downstream online policy learning of robotic manipulation tasks (Xiao et al.,

2022; Nair et al., 2022). More recently, others have leveraged the common-sense

capabilities of vision-language models (Driess et al., 2023; Chen et al., 2023) as a

pretrained model and fine-tuned on aggregated teleoperated robot demonstrations

using behavioral cloning (O’Neill et al., 2024; Shi et al., 2025) to produce vision-

language action models.

Pre-trained multi-task policies from human demonstrations provide a valuable

prior, capturing smooth, human-like motions, but may yield suboptimal task perfor-

mance due to compounding error from out-of-distribution scenarios. RL fine-tuning

offers a way to overcome this limitation to improve task success rates while retain-

ing human-preferred motions. MTBench can significantly speed up the evaluation of

methods for such RL fine-tuning of pre-trained policies (Nakamoto et al., 2023; Yuan

et al., 2024; Hu et al., 2024; Wagenmaker et al., 2025). By facilitating rapid online

37

training and experience collection across multiple tasks simultaneously, MTBench can

accelerate research into the offline to online paradigm for robotics.

6.2 Data collection

More directly, MTBench’s rapid throughput can collect experience from expert

RL policies for distillation. We can also collect RL training histories across tasks in

parallel for use in collecting offline RL datasets or enabling algorithm distillation,

learning to learn the RL algorithm itself (Laskin et al., 2022).

6.3 Automated Task Creation

While MTBench is the first of its kind to enable rapid GPU-accelerated re-

search into multi-task robotic manipulation with its broad distribution of 50 tasks,

it pales in comparison to the breadth of tasks typically provided in benchmarks for

alternate methods to train generalist agents (Park et al., 2024; O’Neill et al., 2024)

and requires significant manual effort to design environments, impeding its scalabil-

ity. MTBench is a valuable platform for which generative AI pipelines like digital

cousins (Dai et al., 2024) as well as automated reward design (Ma et al., 2024) could

significantly accelerate the addition of new tasks.

Specifically, reward design remains a major pain point of towards the ex-

tensibility of MTBench. While MTBench is as faithful as possible to the original

Meta-World (Yu et al., 2021), all tasks are still not individually solvable. Tuning

these reward functions (manually or automatically) would lead to very different con-

clusions.

6.4 Pixel-Based Observations

MTBench is limited to state-based MTRL to retain high simulation through-

put. Reimplementing MTBench in NVIDIA IsaacLab would retain high throughput

38

batched A2C with pixel-based observations by virtue of its tiled rendering system.

However, using pixel-based observations will never be as fast as state-based MTRL

and shifts the focus of the benchmark from algorithmic development to concerns of

real-world deployment, such as in locomotion (Agarwal et al., 2023). Nevertheless, it

presents an interesting future line of work for massively parallel MTRL.

39

Chapter 7: Conclusion

We present MTBench, a highly extensible MTRL benchmark that includes a

GPU-accelerated implementation of Meta-World tasks, extensive gradient manipula-

tion and neural architecture baselines, and an initial study on the current state as

well as future directions of MTRL in the massively parallel regime.

We are particularly excited about the potential for this benchmark to ac-

celerate research in online RL and make it easier for researchers to move beyond

game-based environments.

40

Appendix A: PQN

Parallel Q-learning (Gallici et al., 2024) is a recent off-policy TD method

designed for discrete action spaces and massively parallelized GPU-based simulators

that casts aside the tricks introduced over the years to stabilize deep Q learning

such as replay buffers (Mnih et al., 2013), target networks (Mnih et al., 2015) and

double Q-networks (Wang et al., 2016) by simply introducing regularization in the

function approximator like LayerNorm (Ba et al., 2016) or BatchNorm (Ioffe and

Szegedy, 2015). Coupled with this architectural change, PQN exploits vectorized

environments by collecting experience in parallel for T steps.

As our action space is continuous, we follow Seyde et al. (2023) to present

a modified version of PQN through bang-off-bang control and treating continuous

control as a M agent multi-agent problem where each actuator is an agent in a coop-

erative game. Then, the state-action function Qθ(st, at) is factorized as the average of

M different state-action functions Qi
θ(st, a

i
t), where the ith state-action function pre-

dicts the value of the bang-off-bang actions in ith action dimension following Sunehag

et al. (2017).

Qθ(st, at)) =
1

M

M∑
i=1

Qi
θ(st, a

i
t) (A.1)

In code, the output of the state-action function is of size (B,M, nb) where B is the

batch size, m is the action dimension/number of actuators (4) and nb is the number

of bins per dimension (3). The action value is recovered by first taking the max

over the bin dimension and then the mean over the action dimension. By taking the

max over the bin dimension, Seyde et al. (2023) sidestepped taking a max over the

continuous action space. Now, we can compute the Bellman target and in the case

of PQN, n-step returns.

yt = r(st, at) + γ
1

M

M∑
i=1

max
ait+1

Qi
θ(st+1, a

i
t+1) (A.2)

41

Appendix B: MTRL Approaches

Here, we present an overview of each state-of-the-art MTRL baseline in MT-

Bench.

B.1 Gradient manipulation methods

Gradient manipulation methods compute a new gradient of the multi-task

objective, incurring the overhead of solving an optimization problem per iteration as

well as storing and computing K task gradients.

PCGrad: Projecting Conflicting Gradients (Yu et al., 2020) observe when the gra-

dients of any two task objectives li conflict (defined as having negative cosine sim-

ilarity) and when their magnitudes are sufficiently different, optimization using the

average gradient will cause negative transfer. It attempts to resolve gradient conflic-

tion by a simple procedure manipulating each task gradient ∇li to be the result of

iteratively removing the conflict with each task gradient ∇lj, ∀j ∈ [K], j ̸= i.

∇l′i ← ∇li −
∇lTi ∇lj
∥∇lj∥2

∇lj if ∇lTi ∇lj < 0 (B.1)

CAGrad: Conflict-Averse Gradient descent (Liu et al., 2024) resolves the gradient

conflict by finding an update vector d ∈ Rm that minimizes the worst-case gradient

conflict across all the tasks. More specifically, let gi be the gradient of task i ∈ [K],

and g0 be the gradient computed from the average loss, CAGrad seeks to solve such

an optimization problem:

max
d∈Rm

min
i∈[K]
⟨gi, d⟩ s.t. ∥d− g0∥ ≤ c∥g0∥ (B.2)

Here, c ∈ [0, 1) is a pre-specified hyper-parameter that controls the convergence rate.

The optimization problem looks for the best update vector within a local ball centered

at the averaged gradient g0, which also minimizes the conflict in losses ⟨gi, d⟩.

42

FAMO: Fast Adaptive Multitask Optimization (Liu et al., 2023a) addresses the

under-optimization of certain tasks when using standard gradient descent on averaged

losses without incurring the O(K) cost to compute and store all task gradients, which

can be significant, especially as the number of tasks increases. FAMO leverages loss

history to adaptively adjust task weights, ensuring balanced optimization across tasks

while maintaining O(1) space and time complexity per iteration.

B.2 Neural Architectures

Neural Architecture methods seek to avoid task interference by learning shared

representations, which are fed to the prediction head. Such representations accelerate

MTRL.

CARE: Contextual Attention-based Representation learning (Sodhani and Zhang,

2021) utilizes metadata associated with the set of tasks to weight the representations

learned by a mixture of encoders through the attention mechanism.

MOORE: Mixture Of Orthogonal Experts (Hendawy et al., 2024) uses a mixture

of experts to encode the state and orthogonalizes those representations to encourage

diversity, weighting these representations from a task encoder.

PaCo: Parameter Compositional (Sun et al., 2022) learns a shared base parameter

set ϕ = [ϕ1 · · ·ϕk] and task-specific compositional vectors wk such that multiplying ϕ

and wk represents the task parameters θk.

Soft-Modularization: Yang et al. (2020) also uses a mixture of experts to encode

the state but also uses a routing network to softly combine the outputs at each layer

based on the task.

43

Appendix C: Extra Figures

Setting Final Success Rate Wall-Clock Time (Hours)

MT10 0.85 [0.81, 0.88] 0.86 [0.86, 0.87]
MT50 0.78 [0.76, 0.80] 7.49 [7.46, 7.52]

Table C.1: Final performance and wall-clock time for Fast TD3 + SimbaV2 (16M)
using 50M(MT10) or 500M(MT50) frames over 10 seeds. Results show the mean with
a 95% bootstrapped confidence interval.

MethodsTasks
MT10-rand MT50-rand

SR ↑ R ↑ SR ↑ R ↑

Vanilla 87.51 [86.99, 87.97] 1032.99 [1016.82, 1045.94] 63.26 [60.91, 65.37] 817.77 [789.13, 842.97]
Multihead 85.19 [81.42, 88.21] 1005.69 [980.87, 1027.55] 74.03 [71.47, 76.58] 954.97 [939.72, 962.84]
GRPO-Vanilla 91.12 [88.32, 93.96] 916.32 [899.83, 933.60] 74.48 [73.31, 75.64] 916.83 [898.69, 935.66]

PCGrad 86.21 [83.19, 88.32] 1038.27 [1022.88, 1050.59] 59.74 [55.52, 64.12] 760.99 [739.05, 772.13]
CAGrad 82.98 [79.23, 86.27] 938.43 [896.83, 972.29] 67.70 [64.76, 70.53] 874.45 [845.62, 903.10]
FAMO 87.26 [82.53, 91.57] 1016.11 [964.30, 1053.88] 74.52 [73.25, 75.75] 961.03 [946.64, 976.15]

PaCo 84.37 [81.61, 86.61] 995.39 [970.20, 1017.21] 70.46 [67.01, 73.32] 917.84 [881.61, 953.14]
SH-MOORE 84.60 [81.55, 87.59] 1022.64 [1006.23, 1037.54] 66.33 [64.56, 68.29] 837.70 [815.00, 860.89]
MH-MOORE 86.94 [83.91, 89.01] 1044.85 [1029.76, 1056.96] 79.46 [77.40, 82.24] 1019.59 [999.24, 1048.88]
SH-CARE 81.51 [78.52, 84.49] 964.28 [948.59, 979.89] 67.51 [66.33, 68.72] 842.04 [822.31, 864.66]
MH-CARE 84.79 [81.34, 87.32] 990.03 [972.35, 1006.34] 71.05 [69.88, 72.30] 863.88 [850.43, 878.51]
Soft-Modularization 82.96 [80.15, 85.66] 994.29 [980.24, 1009.03] 67.72 [65.06, 69.93] 860.41 [832.44, 883.77]

Table C.2: 95% bootstrapped confidence intervals of the Meta-World evaluation met-
rics used to generate Figure 4.3 and Figure 4.6

44

64 72 80 88
MT10

MH-MOORE
SH-MOORE

SH-PaCo
MH-CARE
SH-CARE

Soft-Modularization
FAMO

CAGrad
PCGrad

MH-Vanilla
SH-Vanilla

40 50 60 70
MT50

Figure C.1: 95% bootstrapped CIs of the average success rate of all MT-PPO MTRL
approaches using 250M frames per run over 10 seeds in Meta-World.

Environments Horizon Batch Size Mean Time (h) Mean Success Rate

1024 32 32768 13.530000 0.656700
1024 64 65536 14.290000 0.673100
2048 32 65536 7.470000 0.588000
2048 64 131072 7.440000 0.643400
4096 32 131072 4.340000 0.557100
4096 64 262144 4.240000 0.663800
8192 32 262144 2.790000 0.577000
8192 64 524288 2.680000 0.698700

16384 32 524288 2.030000 0.617300
16384 64 1048576 1.960000 0.702800
32768 32 1048576 1.490000 0.633200
32768 64 2097152 1.460000 0.714100

Table C.3: 95% CI of average final performance and mean time across different scaling
configurations. Each variant uses 500M frames per run over 5 seeds

45

MT10-rand

Parameters Vanilla Vanilla (TE) Simba V2 SimbaV2 (TE)

100K 87.39 [86.16, 88.10] 88.03 [87.48, 88.75] — —
1M 88.01 [87.77, 88.44] 88.63 [88.45, 88.95] 87.71 [87.39, 88.29] 88.09 [87.89, 88.26]
4M 87.77 [86.22, 88.55] 88.76 [88.56, 88.92] 84.76 [77.70, 88.54] 88.03 [87.56, 88.41]
16M 88.32 [87.94, 88.53] 88.51 [88.26, 88.69] 81.30 [78.19, 87.48] 87.81 [87.58, 88.15]
64M 84.59 [77.39, 88.72] 78.56 [76.99, 80.34] 84.58 [78.02, 88.13] 87.79 [87.31, 88.21]
256M 8.03 [0.24, 22.40] 0.19 [0.00, 0.55] 86.25 [83.12, 87.89] 84.63 [78.02, 88.21]

MT50-rand

Parameters Vanilla Vanilla (TE) Simba V2 SimbaV2 (TE)

100K 58.33 [50.59, 64.59] 66.95 [58.35, 73.84] — —
1M 68.68 [66.00, 70.50] 75.46 [72.33, 78.27] 72.76 [69.37, 76.32] 67.56 [64.51, 69.85]
4M 67.39 [66.86, 67.96] 74.23 [73.63, 74.91] 69.81 [67.68, 72.87] 72.56 [67.78, 76.71]
16M 66.98 [62.89, 69.78] 72.50 [68.76, 76.76] 72.49 [71.52, 74.12] 71.79 [70.31, 72.81]
64M 69.67 [67.86, 71.39] 74.95 [70.57, 78.56] 75.55 [74.86, 76.67] 70.77 [66.62, 73.68]
256M 68.70 [65.57, 71.84] 22.91 [3.54, 59.53] 77.24 [75.84, 79.07] 71.63 [69.27, 73.01]

Table C.4: Mean Success Rate (SR) with 95% bootstrapped confidence intervals.
Results are shown as Mean [Lower, Upper].

46

Task Final Success Rate (Mean ± 95% CI)

Assembly 0.029± 0.025
Basketball 0.886± 0.063
Bin Picking 0.890± 0.071
Box Close 0.000± 0.000
Button Press 0.986± 0.021
Button Press Topdown 1.000± 0.000
Button Press Topdown Wall 1.000± 0.000
Button Press Wall 0.999± 0.001
Coffee Button 0.792± 0.256
Coffee Pull 0.742± 0.311
Coffee Push 0.776± 0.060
Dial Turn 0.949± 0.011
Disassemble 0.000± 0.000
Door Close 0.951± 0.037
Door Lock 0.967± 0.047
Door Open 0.000± 0.000
Door Unlock 0.833± 0.023
Drawer Close 1.000± 0.000
Drawer Open 0.994± 0.009
Faucet Close 0.996± 0.003
Faucet Open 0.999± 0.001
Hammer 0.726± 0.330
Hand Insert 0.919± 0.005
Handle Press 0.997± 0.004
Handle Press Side 1.000± 0.000
Handle Pull 0.996± 0.005
Handle Pull Side 0.998± 0.002
Lever Pull 0.739± 0.373
Peg Insert Side 0.994± 0.002
Peg Unplug Side 0.361± 0.361
Pick Out Of Hole 0.984± 0.008
Pick Place 0.981± 0.015
Pick Place Wall 0.043± 0.041
Plate Slide 0.845± 0.023
Plate Slide Back 0.881± 0.061
Plate Slide Back Side 0.943± 0.029
Plate Slide Side 0.743± 0.336
Push 0.739± 0.077
Push Back 0.882± 0.062
Push Wall 0.001± 0.001
Reach 0.907± 0.027
Reach Wall 0.877± 0.014
Shelf Place 0.056± 0.042
Soccer 0.702± 0.027
Stick Pull 0.059± 0.059
Stick Push 0.644± 0.091
Sweep 0.972± 0.030
Sweep Into Goal 0.876± 0.032
Window Close 0.975± 0.015
Window Open 0.998± 0.001

Average (all tasks) 0.753± 0.091

Table C.5: Final success rate for single-task runs. Each task’s performance is the
mean across seeds, reported with its 95% CI margin of error. The global average is
the mean of these per-task averages, also with a 95% CI.

47

Appendix D: Hyperparamters

In this section, we provide hyperparameter values for each MTRL approach.

Hardware Information All experiments related to wall-clock time were run on

an NVIDIA A100, and otherwise could have been run on an NVIDIA RTX A5500.

48

Description value variable name

Number of environments 24576 / 24576 num envs
Network hidden sizes [256,128,64] network.mlp.units
Minibatch size 16384 / 32768 minibatch size
Horizon length 32 horizon
Mini-epochs 5 mini epochs
Number of epochs 1272 / 1272 max epochs
Episode length 150 episodeLength
Discount factor 0.99 gamma
Clip ratio 0.2 e clip
Policy entropy coefficient .005 entropy coef
Optimizer learning rate 5e-4 learning rate
Optimizer learning schedule fixed lr schedule
Advantage estimation tau 0.95 tau
Value Normalization by task True normalize value
Input Normalization by task True normalize input
Separate critic and policy networks True network.separate

CARE-Specific Hyperparameters

Network hidden sizes [400,400,400] care.units
Mixture of Encoders experts 6 encoder.num experts
Mixture of Encoders layers 2 encoder.num layers
Mixture of Encoders hidden dim 50 encoder.D
Attention temperature 1.0 encoder.temperature
Post-Attention MLP hidden sizes [50,50] attention.units
Context encoder hidden sizes [50,50] context encoder.units
Context encoder bias True context encoder.bias

MOORE-Specific Hyperparameters

MoE experts 4 / 6 moore.num experts
MoE layers 3 moore.num layers
MoE hidden dim 400 moore.D
Activation before/after task encoding weighting [Linear, Tanh] moore.agg activation
Task encoder hidden sizes [256] task encoder.units
Task encoder bias False task encoder.bias

PaCo-Specific Hyperparameters

Number of Compositional Vectors 5 / 20 paco.K
Network hidden dim 400 paco.D
Network layers 3 paco.num layers
Task encoder bias False task encoder.bias
Task encoder init orthogonal task encoder.compositional initializer
Task encoder activation softmax task encoder.activation

Soft-Modularization-Specific Hyperparameters

MoE experts 2 soft network.num experts
MoE layers 4 soft network.num layer
State encoder hidden sizes [256,256] state encoder.units
Task encoder hidden sizes [256] task encoder.units

PCGrad Hyperparameters

Number of environments 24576 / 16384 num envs
Project actor gradient False project actor gradient
Project critic gradient True project critic gradient

CAGrad Hyperparameters

Number of environments 24576 / 6144 num envs
Project actor gradient False project actor gradient
Project critic gradient True project critic gradient
Local ball radius for searching update vector 0.4 c

FAMO Hyperparameters

Regularization coefficient 1e-3 gamma
Learning rate of the task logits 1e-3 w lr
Clipping value of the task logits 1e-2 epsilon
Normalize the task logits gradients True norm w grad

Table D.1: Hyperparameters used for MTPPO. A ’/’ indicates the value used for
Meta-World’s MT10/MT50 respectively, and otherwise is identical for each setting.

49

Description value variable name

Number of environments 4096 / 24576 num envs
Minibatch size 16384 / 76800 minibatch size
Episode length 150 episodeLength
Horizon length 150 horizon
Mini-epochs 5 mini epochs
Number of epochs 1908 / 1272 max epochs
Discount factor 0.99 gamma
Clip ratio 0.2 e clip
Policy entropy coefficient .005 entropy coef
Optimizer learning rate 5e-4 learning rate
Optimizer learning schedule fixed lr schedule
Advantage estimation tau 0.95 tau
Value Normalization by task True normalize value
Input Normalization by task True normalize input
Separate critic and policy networks True network.separate

Table D.2: Hyperparameters used for MT-GRPO in MT10 / MT50. A ’/’ indicates
the value used for MT10/MT50 respectively and otherwise is identical for each setting.

50

Description value variable name

Number of environments 8192 num envs
Gamma .99 gamma
Peng’s Q(lambda) .5 q lambda
Number of minibatches 4 num minibatches
Episode length 500 episodeLength
Bang-off-Bang 3 binsPerDim
Action Scale .005 actionScale
Mini epochs 8 mini epochs
Max grad norm 10.0 max grad norm
Horizon 16 horizon
Start epsilon 1.0 start
End epsilon 0.005 end
Decay epsilon True decay epsilon
Fraction of exploration steps .005 exploration fraction
Critic learning rate 3e-4 critic lr
Anneal learning rate True anneal lr
Value Normalization by task False normalize value
Input Normalization by task False normalize input
Use residual connections True q.residual network
Number of LayerNormAndResidualMLPs 2 q.num blocks
Network hidden dim 256 q.D
Batch norm input False q.norm first layer

Table D.3: Hyperparameters used for MT-PQN in MT10.

51

Description value variable name

Number of environments 4096 num envs
Network hidden sizes [512,256,128] network.mlp.units
Gamma .99 gamma
Separate critic and policy networks True network.separate
Number of Gradient steps per epoch 32 gradient steps per itr
Learnable temperature True learnable temperature
Use distangeled alpha True use disentangled alpha
Initial alpha 1 init alpha
Alpha learning rate 5e-3 alpha lr
Critic learning rate 5e-4 critic lr
Critic tau .01 critic tau
Batch size 8192 batch size
N-step reward 16 nstep
Grad norm .5 grad norm
Horizon 1 horizon
Value Normalization by task True normalize value
Input Normalization by task True normalize input
Replay Buffer Size 5000000 replay buffer size
Target entropy coef 1.0 target entropy coef

Table D.4: Hyperparameters used for MT-SAC in MT10/MT50. A ’/’ indicates the
value used for MT10/MT50 respectively and otherwise is identical for each setting.
MT-SAC is very sensitive to the number of environments and replay ratio in the
massively parallel regime.

52

Works Cited

Ananye Agarwal, Ashish Kumar, Jitendra Malik, and Deepak Pathak. Legged

locomotion in challenging terrains using egocentric vision. In Conference on

robot learning, pages 403–415. PMLR, 2023.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville,

and Marc Bellemare. Deep reinforcement learning at the edge of the statistical

precipice. Advances in neural information processing systems, 34:29304–29320,

2021.

Siddhant Agarwal, Harshit Sikchi, Peter Stone, and Amy Zhang. Proto succes-

sor measure: Representing the space of all possible solutions of reinforcement

learning. arXiv preprint arXiv:2411.19418, 2024.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob Mc-

Grew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael

Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113,

2019.

Arthur Allshire, Mayank Mittal, Varun Lodaya, Viktor Makoviychuk, Denys

Makoviichuk, Felix Widmaier, Manuel Wüthrich, Stefan Bauer, Ankur Handa,

and Animesh Garg. Transferring dexterous manipulation from gpu simulation

to a remote real-world trifinger. arXiv preprint arXiv:2108.09779, 2021.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefow-

icz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn

Powell, Alex Ray, et al. Learning dexterous in-hand manipulation. The Inter-

national Journal of Robotics Research, 39(1):3–20, 2020.

53

Genesis Authors. Genesis: A generative and universal physics engine for

robotics and beyond, December 2024. URL https://github.com/Genesis-Embodied-AI/

Genesis.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normaliza-

tion, 2016. URL https://arxiv.org/abs/1607.06450.

Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Sasha Abramowitz,

Paul Duckworth, Vincent Coyette, Laurence I Midgley, Elshadai Tegegn, Tris-

tan Kalloniatis, et al. Jumanji: a diverse suite of scalable reinforcement learn-

ing environments in jax. arXiv preprint arXiv:2306.09884, 2023.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Ir-

pan, Aviral Kumar, Tianhe Yu, Alexander Herzog, Karl Pertsch, et al. Q-

transformer: Scalable offline reinforcement learning via autoregressive q-functions.

In Conference on Robot Learning, pages 3909–3928. PMLR, 2023.

Changan Chen, Carl Schissler, Sanchit Garg, Philip Kobernik, Alexander Clegg,

Paul Calamia, Dhruv Batra, Philip W Robinson, and Kristen Grauman. Soundspaces

2.0: A simulation platform for visual-acoustic learning. In NeurIPS 2022

Datasets and Benchmarks Track, 2022a.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha

Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision trans-

former: Reinforcement learning via sequence modeling. Advances in neural

information processing systems, 34:15084–15097, 2021.

Siwei Chen, Yiqing Xu, Cunjun Yu, Linfeng Li, Xiao Ma, Zhongwen Xu, and

David Hsu. Daxbench: Benchmarking deformable object manipulation with

differentiable physics. arXiv preprint arXiv:2210.13066, 2022b.

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo,

Jialin Wu, Carlos Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay,

54

https://github.com/Genesis-Embodied-AI/Genesis
https://github.com/Genesis-Embodied-AI/Genesis
https://arxiv.org/abs/1607.06450

et al. Pali-x: On scaling up a multilingual vision and language model. arXiv

preprint arXiv:2305.18565, 2023.

Alfredo V Clemente, Humberto N Castejón, and Arjun Chandra. Efficient par-

allel methods for deep reinforcement learning. arXiv preprint arXiv:1705.04862,

2017.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging pro-

cedural generation to benchmark reinforcement learning. In International con-

ference on machine learning, pages 2048–2056. PMLR, 2020.

Tianyuan Dai, Josiah Wong, Yunfan Jiang, Chen Wang, Cem Gokmen, Ruohan

Zhang, Jiajun Wu, and Li Fei-Fei. Automated creation of digital cousins for

robust policy learning. arXiv preprint arXiv:2410.07408, 2024.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark

Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large

scale distributed deep networks. Advances in neural information processing

systems, 25, 2012.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G

Bellemare, and Aaron Courville. Sample-efficient reinforcement learning by

breaking the replay ratio barrier. In Deep Reinforcement Learning Workshop

NeurIPS 2022, 2022.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowd-

hery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe

Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet, Daniel Duckworth,

Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Gr-

eff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied mul-

timodal language model, 2023. URL https://arxiv.org/abs/2303.03378.

55

https://arxiv.org/abs/2303.03378

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom

Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala:

Scalable distributed deep-rl with importance weighted actor-learner architec-

tures. In International conference on machine learning, pages 1407–1416.

PMLR, 2018.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang,

Haoyi Zhu, Andrew Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar.

Minedojo: Building open-ended embodied agents with internet-scale knowledge.

In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,

Advances in Neural Information Processing Systems, volume 35, pages 18343–

18362. Curran Associates, Inc., 2022. URL https://proceedings.neurips.

cc/paper_files/paper/2022/file/74a67268c5cc5910f64938cac4526a90-Paper-Datasets_

and_Benchmarks.pdf.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Täıga, Yevgen Cheb-

otar, Ted Xiao, Alex Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra

Faust, et al. Stop regressing: Training value functions via classification for

scalable deep rl. arXiv preprint arXiv:2403.03950, 2024.

Franka Robotics. Franka emika panda robot, 2017. URL https://www.

franka.de. Accessed: 2025-02-17.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch,

and Olivier Bachem. Brax–a differentiable physics engine for large scale rigid

body simulation. arXiv preprint arXiv:2106.13281, 2021.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja,

Jakob Nicolaus Foerster, and Mario Martin. Simplifying deep temporal differ-

ence learning, 2024. URL https://arxiv.org/abs/2407.04811.

56

https://proceedings.neurips.cc/paper_files/paper/2022/file/74a67268c5cc5910f64938cac4526a90-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/74a67268c5cc5910f64938cac4526a90-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/74a67268c5cc5910f64938cac4526a90-Paper-Datasets_and_Benchmarks.pdf
https://www.franka.de
https://www.franka.de
https://arxiv.org/abs/2407.04811

Jake Grigsby, Justin Sasek, Samyak Parajuli, Ikechukwu D Adebi, Amy Zhang,

and Yuke Zhu. Amago-2: Breaking the multi-task barrier in meta-reinforcement

learning with transformers. Advances in Neural Information Processing Sys-

tems, 37:87473–87508, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-

critic: Off-policy maximum entropy deep reinforcement learning with a stochas-

tic actor, 2018. URL https://arxiv.org/abs/1801.01290.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world

models for continuous control. arXiv preprint arXiv:2310.16828, 2023.

Ahmed Hendawy, Jan Peters, and Carlo D’Eramo. Multi-task reinforcement

learning with mixture of orthogonal experts, 2024. URL https://arxiv.org/

abs/2311.11385.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt,

and Hado Van Hasselt. Multi-task deep reinforcement learning with popart.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,

pages 3796–3803, 2019.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,

Hado van Hasselt, and David Silver. Distributed prioritized experience replay,

2018. URL https://arxiv.org/abs/1803.00933.

Jiaheng Hu, Rose Hendrix, Ali Farhadi, Aniruddha Kembhavi, Roberto Martin-

Martin, Peter Stone, Kuo-Hao Zeng, and Kiana Ehsani. Flare: Achieving

masterful and adaptive robot policies with large-scale reinforcement learning

fine-tuning, 2024. URL https://arxiv.org/abs/2409.16578.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios

Tsounis, Vladlen Koltun, and Marco Hutter. Learning agile and dynamic

motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.

57

https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/2311.11385
https://arxiv.org/abs/2311.11385
https://arxiv.org/abs/1803.00933
https://arxiv.org/abs/2409.16578

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift, 2015. URL https://

arxiv.org/abs/1502.03167.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rl-

bench: The robot learning benchmark & learning environment. IEEE Robotics

and Automation Letters, 2020.

Vira Joshi, Zifan Xu, Bo Liu, Peter Stone, and Amy Zhang. Benchmark-

ing massively parallelized multi-task reinforcement learning for robotics tasks.

arXiv preprint arXiv:2507.23172, 2025.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico

Jonschkowski, Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt:

Continuous multi-task robotic reinforcement learning at scale. arXiv preprint

arXiv:2104.08212, 2021.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A

survey of zero-shot generalisation in deep reinforcement learning. Journal of

Artificial Intelligence Research, 76:201–264, 2023.

Sotetsu Koyamada, Shinri Okano, Soichiro Nishimori, Yu Murata, Keigo Habara,

Haruka Kita, and Shin Ishii. Pgx: Hardware-accelerated parallel game simula-

tors for reinforcement learning. In Advances in Neural Information Processing

Systems, volume 36, pages 45716–45743, 2023.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey

Levine. Offline q-learning on diverse multi-task data both scales and general-

izes. arXiv preprint arXiv:2211.15144, 2022.

Robert Tjarko Lange. gymnax: A JAX-based reinforcement learning environ-

ment library, 2022. URL http://github.com/RobertTLange/gymnax.

58

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
http://github.com/RobertTLange/gymnax

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer,

Richie Steigerwald, DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks,

et al. In-context reinforcement learning with algorithm distillation. arXiv

preprint arXiv:2210.14215, 2022.

Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul

Choo. Hyperspherical normalization for scalable deep reinforcement learning.

arXiv preprint arXiv:2502.15280, 2025.

Zechu Li, Tao Chen, Zhang-Wei Hong, Anurag Ajay, and Pulkit Agrawal. Par-

allel q-learning: Scaling off-policy reinforcement learning under massively par-

allel simulation. In International Conference on Machine Learning. PMLR,

2023.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken

Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstrac-

tions for distributed reinforcement learning. In International conference on

machine learning, pages 3053–3062. PMLR, 2018a.

Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chentanez, Miles

Macklin, and Dieter Fox. Gpu-accelerated robotic simulation for distributed re-

inforcement learning. In Conference on Robot Learning, pages 270–282. PMLR,

2018b.

William Liang, Sam Wang, Hung-Ju Wang, Osbert Bastani, Dinesh Jayaraman,

and Yecheng Jason Ma. Eurekaverse: Environment curriculum generation via

large language models, 2024. URL https://arxiv.org/abs/2411.01775.

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multi-

task optimization, 2023a. URL https://arxiv.org/abs/2306.03792.

59

https://arxiv.org/abs/2411.01775
https://arxiv.org/abs/2306.03792

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter

Stone. Libero: Benchmarking knowledge transfer for lifelong robot learning,

2023b. URL https://arxiv.org/abs/2306.03310.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse

gradient descent for multi-task learning, 2024. URL https://arxiv.org/abs/

2110.14048.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du,

Wee Sun Lee, and Min Lin. Understanding r1-zero-like training: A critical

perspective. arXiv preprint arXiv:2503.20783, 2025.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bas-

tani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eu-

reka: Human-level reward design via coding large language models, 2024. URL

https://arxiv.org/abs/2310.12931.

Denys Makoviichuk and Viktor Makoviychuk. rl-games: A high-performance

framework for reinforcement learning. https://github.com/Denys88/rl_

games, May 2021.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier

Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur

Handa, and Gavriel State. Isaac gym: High performance gpu-based physics

simulation for robot learning, 2021. URL https://arxiv.org/abs/2108.

10470.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan,

Matthew Jackson, Samuel Coward, and Jakob Foerster. Craftax: A lightning-

fast benchmark for open-ended reinforcement learning, 2024. URL https:

//arxiv.org/abs/2402.16801.

60

https://arxiv.org/abs/2306.03310
https://arxiv.org/abs/2110.14048
https://arxiv.org/abs/2110.14048
https://arxiv.org/abs/2310.12931
https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2402.16801
https://arxiv.org/abs/2402.16801

Walter Mayor, Johan Obando-Ceron, Aaron Courville, and Pablo Samuel Cas-

tro. The impact of on-policy parallelized data collection on deep reinforcement

learning networks, 2025. URL https://arxiv.org/abs/2506.03404.

David McAllister, Songwei Ge, Brent Yi, Chung Min Kim, Ethan Weber, Hong-

suk Choi, Haiwen Feng, and Angjoo Kanazawa. Flow matching policy gradi-

ents, 2025. URL https://arxiv.org/abs/2507.21053.

Reginald McLean, Evangelos Chatzaroulas, J K Terry, Isaac Woungang, Na-

riman Farsad, and Pablo Samuel Castro. Multi-task reinforcement learning

enables parameter scaling. In Reinforcement Learning Conference, 2025. URL

https://openreview.net/forum?id=eBWwBIFV7T.

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David

Hoeller, Jia Lin Yuan, Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay

Mandlekar, Buck Babich, Gavriel State, Marco Hutter, and Animesh Garg.

Orbit: A unified simulation framework for interactive robot learning environ-

ments. IEEE Robotics and Automation Letters, 8(6):3740–3747, 2023. doi:

10.1109/LRA.2023.3270034.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement

learning, 2013. URL https://arxiv.org/abs/1312.5602.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-

ness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby

Fidjeland, Georg Ostrovski, Stig Petersen, Charlie Beattie, Amir Sadik, Ioan-

nis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,

and Demis Hassabis. Human-level control through deep reinforcement learn-

ing. Nature, 518:529–533, 2015. URL https://api.semanticscholar.org/

CorpusID:205242740.

61

https://arxiv.org/abs/2506.03404
https://arxiv.org/abs/2507.21053
https://openreview.net/forum?id=eBWwBIFV7T
https://arxiv.org/abs/1312.5602
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-

othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-

chronous methods for deep reinforcement learning. In International conference

on machine learning, pages 1928–1937. PmLR, 2016.

Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda

Prorok. Popgym: Benchmarking partially observable reinforcement learning.

arXiv preprint arXiv:2303.01859, 2023.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,

Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles

Beattie, Stig Petersen, et al. Massively parallel methods for deep reinforcement

learning. arXiv preprint arXiv:1507.04296, 2015.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav

Gupta. R3m: A universal visual representation for robot manipulation. arXiv

preprint arXiv:2203.12601, 2022.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma,

Chelsea Finn, Aviral Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl

pre-training for efficient online fine-tuning. Advances in Neural Information

Processing Systems, 36:62244–62269, 2023.

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Mi loś, and

Marek Cygan. Bigger, regularized, optimistic: scaling for compute and sample-

efficient continuous control. arXiv preprint arXiv:2405.16158, 2024.

Michal Nauman, Marek Cygan, Carmelo Sferrazza, Aviral Kumar, and Pieter

Abbeel. Bigger, regularized, categorical: High-capacity value functions are

efficient multi-task learners. arXiv preprint arXiv:2505.23150, 2025.

Johan Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother,

Jakob Foerster, Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel

62

Castro. Mixtures of experts unlock parameter scaling for deep rl. arXiv

preprint arXiv:2402.08609, 2024.

OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung,

Przemys law Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq

Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub

Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan Raiman, Tim

Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie

Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforce-

ment learning, 2019. URL https://arxiv.org/abs/1912.06680.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Ab-

hishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar,

Ajinkya Jain, et al. Open x-embodiment: Robotic learning datasets and rt-x

models: Open x-embodiment collaboration 0. In 2024 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 6892–6903. IEEE, 2024.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Og-

bench: Benchmarking offline goal-conditioned rl. arXiv preprint arXiv:2410.20092,

2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers.

In Proceedings of the IEEE/CVF international conference on computer vision,

pages 4195–4205, 2023.

Lerrel Pinto and Abhinav Gupta. Learning to push by grasping: Using multiple

tasks for effective learning, 2016. URL https://arxiv.org/abs/1609.09025.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexan-

der Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay,

Jost Tobias Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175,

2022.

63

https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1609.09025

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to

walk in minutes using massively parallel deep reinforcement learning. In Con-

ference on Robot Learning, pages 91–100. PMLR, 2022.

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei

Lupu, Gardar Ingvarsson, Timon Willi, Ravi Hammond, Akbir Khan, Chris-

tian Schroeder de Witt, Alexandra Souly, Saptarashmi Bandyopadhyay, Mikayel

Samvelyan, Minqi Jiang, Robert Tjarko Lange, Shimon Whiteson, Bruno Lac-

erda, Nick Hawes, Tim Rocktaschel, Chris Lu, and Jakob Nicolaus Foerster.

Jaxmarl: Multi-agent rl environments and algorithms in jax, 2024. URL

https://arxiv.org/abs/2311.10090.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms, 2017. URL https://arxiv.org/

abs/1707.06347.

Younggyo Seo, Carmelo Sferrazza, Haoran Geng, Michal Nauman, Zhao-Heng

Yin, and Pieter Abbeel. Fasttd3: Simple, fast, and capable reinforcement

learning for humanoid control, 2025. URL https://arxiv.org/abs/2505.

22642.

Tim Seyde, Peter Werner, Wilko Schwarting, Igor Gilitschenski, Martin Ried-

miller, Daniela Rus, and Markus Wulfmeier. Solving continuous control via

q-learning, 2023. URL https://arxiv.org/abs/2210.12566.

Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter

Abbeel. Humanoidbench: Simulated humanoid benchmark for whole-body

locomotion and manipulation, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi,

Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseek-

math: Pushing the limits of mathematical reasoning in open language models,

2024. URL https://arxiv.org/abs/2402.03300.

64

https://arxiv.org/abs/2311.10090
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2505.22642
https://arxiv.org/abs/2505.22642
https://arxiv.org/abs/2210.12566
https://arxiv.org/abs/2402.03300

Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch,

Quan Vuong, James Tanner, Anna Walling, Haohuan Wang, Niccolo Fusai,

et al. Hi robot: Open-ended instruction following with hierarchical vision-

language-action models. arXiv preprint arXiv:2502.19417, 2025.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-

shelvam, Marc Lanctot, et al. Mastering the game of go with deep neural

networks and tree search. nature, 529(7587):484–489, 2016.

Jayesh Singla, Ananye Agarwal, and Deepak Pathak. Sapg: Split and aggre-

gate policy gradients. In Proceedings of the 41st International Conference on

Machine Learning (ICML 2024), Proceedings of Machine Learning Research,

Vienna, Austria, July 2024. PMLR.

Shagun Sodhani and Amy Zhang. Mtrl - multi task rl algorithms. Github,

2021. URL https://github.com/facebookresearch/mtrl.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement

learning with context-based representations. In International Conference on

Machine Learning, 2021. URL https://api.semanticscholar.org/CorpusID:

231879645.

Lingfeng Sun, Haichao Zhang, Wei Xu, and Masayoshi Tomizuka. Paco:

Parameter-compositional multi-task reinforcement learning. ArXiv, abs/2210.11653,

2022. URL https://api.semanticscholar.org/CorpusID:253080666.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki,

Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z.

Leibo, Karl Tuyls, and Thore Graepel. Value-decomposition networks for co-

operative multi-agent learning, 2017. URL https://arxiv.org/abs/1706.

05296.

65

https://github.com/facebookresearch/mtrl
https://api.semanticscholar.org/CorpusID:231879645
https://api.semanticscholar.org/CorpusID:231879645
https://api.semanticscholar.org/CorpusID:253080666
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Pol-

icy gradient methods for reinforcement learning with function approximation.

Advances in neural information processing systems, 12, 1999.

Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi

Yuan, Chen Bao, Xinsong Lin, Yulin Liu, Tse kai Chan, Yuan Gao, Xuanlin Li,

Tongzhou Mu, Nan Xiao, Arnav Gurha, Zhiao Huang, Roberto Calandra, Rui

Chen, Shan Luo, and Hao Su. Maniskill3: Gpu parallelized robotics simulation

and rendering for generalizable embodied ai. arXiv preprint arXiv:2410.00425,

2024.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas,

David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy

Lillicrap, and Martin Riedmiller. Deepmind control suite, 2018. URL https:

//arxiv.org/abs/1801.00690.

Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste

Alayrac, Montserrat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna,

Robert Baruch, Maria Bauza, Michiel Blokzijl, et al. Gemini robotics: Bringing

ai into the physical world. arXiv preprint arXiv:2503.20020, 2025.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick,

Raia Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask

reinforcement learning. Advances in neural information processing systems, 30,

2017.

Claas Voelcker, Axel Brunnbauer, Marcel Hussing, Michal Nauman, Pieter

Abbeel, Eric Eaton, Radu Grosu, Amir-massoud Farahmand, and Igor Gilitschen-

ski. Relative entropy pathwise policy optimization. arXiv preprint arXiv:2507.11019,

2025.

66

https://arxiv.org/abs/1801.00690
https://arxiv.org/abs/1801.00690

Andrew Wagenmaker, Mitsuhiko Nakamoto, Yunchu Zhang, Seohong Park,

Waleed Yagoub, Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steer-

ing your diffusion policy with latent space reinforcement learning, 2025. URL

https://arxiv.org/abs/2506.15799.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and

Nando de Freitas. Dueling network architectures for deep reinforcement learn-

ing, 2016. URL https://arxiv.org/abs/1511.06581.

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi

Parikh, Manolis Savva, and Dhruv Batra. Dd-ppo: Learning near-perfect

pointgoal navigators from 2.5 billion frames. arXiv preprint arXiv:1911.00357,

2019.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik

Subramanian, Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska

Eckert, Florian Fuchs, et al. Outracing champion gran turismo drivers with

deep reinforcement learning. Nature, 602(7896):223–228, 2022.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked

visual pre-training for motor control. arXiv preprint arXiv:2203.06173, 2022.

Eliot Xing, Vernon Luk, and Jean Oh. Stabilizing reinforcement learning in

differentiable multiphysics simulation. arXiv preprint arXiv:2412.12089, 2024.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforce-

ment learning with soft modularization, 2020. URL https://arxiv.org/abs/

2003.13661.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman,

and Chelsea Finn. Gradient surgery for multi-task learning, 2020. URL

https://arxiv.org/abs/2001.06782.

67

https://arxiv.org/abs/2506.15799
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/2003.13661
https://arxiv.org/abs/2003.13661
https://arxiv.org/abs/2001.06782

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Avnish Narayan, Hay-

den Shively, Adithya Bellathur, Karol Hausman, Chelsea Finn, and Sergey

Levine. Meta-world: A benchmark and evaluation for multi-task and meta

reinforcement learning, 2021. URL https://arxiv.org/abs/1910.10897.

Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao

Su. Policy decorator: Model-agnostic online refinement for large policy model.

arXiv preprint arXiv:2412.13630, 2024.

Kevin Zakka, Baruch Tabanpour, Qiayuan Liao, Mustafa Haiderbhai, Samuel

Holt, Jing Yuan Luo, Arthur Allshire, Erik Frey, Koushil Sreenath, Lueder A.

Kahrs, Carlo Sferrazza, Yuval Tassa, and Pieter Abbeel. Mujoco playground:

An open-source framework for gpu-accelerated robot learning and sim-to-real

transfer., 2025. URL https://github.com/google-deepmind/mujoco_playground.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Mart́ın-Mart́ın, Abhishek

Joshi, Soroush Nasiriany, and Yifeng Zhu. robosuite: A modular simulation

framework and benchmark for robot learning. arXiv preprint arXiv:2009.12293,

2020.

68

https://arxiv.org/abs/1910.10897
https://github.com/google-deepmind/mujoco_playground

Vita

Viraj Joshi received Bachelors of Science in Computer Science and Mathemat-

ics from The University of Texas at Austin in May 2022. He later began his Master

of Science in Computer Science, with a focus on reinforcement learning, of which this

thesis is the culmination of that effort. After graduation, he will continue RL research

and later apply for PhD programs.

Address: viraj joshi@utexas.edu

This thesis was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

69

	Chapter 1: Introduction
	Chapter 2: Background
	Multi-task reinforcement learning
	GPU Accelerated Simulation

	Chapter 3: Benchmark
	Challenges in Multi-Task Reinforcement Learning
	Meta-World
	Algorithms

	Chapter 4: Results
	Leveraging Massive Parallelism (O1, O2)
	Designing off-policy algorithms (O2)
	MTRL Approaches (O2, O3)
	Reward Sparsity
	Learning without a Critic (O3)
	Decomposing the Batch (O2 ,O3, O4)
	Scaling MTRL (O4)

	Chapter 5: Related Work
	Speeding up Deep RL
	GPU-Accelerated Benchmarks

	Chapter 6: Future Directions
	Offline to online
	Data collection
	Automated Task Creation
	Pixel-Based Observations

	Chapter 7: Conclusion
	Appendix A: PQN
	Appendix B: MTRL Approaches
	Gradient manipulation methods
	Neural Architectures

	Appendix C: Extra Figures
	Appendix D: Hyperparamters
	Works Cited
	Vita

